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Controlling chaos in higher dimensional maps with constant feedback: An analytical approach

Cristian Wieland*
~Received 20 November 2001; published 12 July 2002!

We introduce two methods to control chaos in higher-dimensional discrete maps with constant feedback. It
is analytically shown for a general class of function vectors that chaotic attractors can be converted into fixed
point attractors. Additionally, a method to choose an appropriate constant feedback is presented. The applica-
tion of these methods does not requirea priori knowledge of system equations, since time series information
can be used. Desired periodic orbits can be accessed by varying the constant feedback. As an example, the
methods are applied to the He´non map.
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I. INTRODUCTION

After the detection of chaos, the current opinion of scie
tists was that chaotic motion was neither predictable nor c
trollable because of the sensitive dependence on initial c
ditions of chaotic systems, e.g., see Ref.@1#. Perturbations in
the system’s behavior for the purpose of control would o
generate different chaotic behavior. This was a fallacy, as
pioneering work of Ott, Grebogi, and Yorke~OGY-method!
in 1990 showed. Since then the problem of controlling ch
has been an attractive field of research, especially am
physicists over the past decade, yielding two ways to con
chaos. The first way is to stabilize unstable periodic orb
embedded within a chaotic attractor represented, for
ample, by the well-known OGY method@2# that applies
small perturbations, determined by closed-loop control te
niques, to an accessible system parameter and by Pyr
delayed feedback control~DFC! @3#, where continuous linea
feedback is added to the system at each computational
step. The second way, called suppressing chaos, is to co
chaotic system behavior into desired periodic behav
Some well-known methods are, for example, adaptive c
trol algorithms such as@4,5#, the use of noise@6,7#, and the
constant feedback method~CF! @8#, which will be investi-
gated in detail in this work. Although a great number
publications on controlling chaos exist, many approac
suffer from a lack of precise analytical description, i.e., t
applicability of methods is only verified numerically or in a
experimental environment; note that numerical evidence
experiments cannot assure periodicity or convergence in
eral. In Ref.@9# examples are listed. This procedure has
disadvantage that a transfer of chaos control methods f
certain numerical examples to other more practical case
likely to fail. A precise analytical description, although
many cases hard to meet, is thus advisable and will be
lowed when we introduce methods for controlling chaos.

Section II commences with an overview of previous wo
on CF. There it will be shown that publications on CF eith
concentrated on a special kind of one-dimensional disc
map with unimodal system function or are restricted to n
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merical results in the higher-dimensional case. Hence, th
exists a lack of theory of controlling chaos in highe
dimensional discrete maps with CF. The question to be d
with is thus whether there is a way to control chaos
n-dimensional discrete maps by simply adding a const
feedback. For this, the original CF and a modified const
feedback method~MCF! are investigated in Sec. III. It will
be proven analytically, and not only by numerical resu
that both methods are suitable for controlling chaos
higher-dimensional discrete systems. Furthermore, a me
for choosing an appropriate control parameter is also p
vided. In Sec. IV, some numerical results are presented
addition it will be shown that possible new fixed points
well as the constant feedback vector can be determined f
time series information. This paper closes with a conclus
in which the results for CF and MCF are summarized a
compared to other methods.

II. PREVIOUS WORK

Parthasarathy and Sinha@8# presented a simple metho
called constant feedback to control chaotic oscillations
one-dimensional discrete maps of the form

xt115 f ~xt!, ~2.1!

where f :I→I is a C2 unimodal function on the interva
I #@0,̀ ). A constant feedbackk with kPR is added at each
iteration to the right-hand side of Eq.~2.1! and it follows that

xt115 f ~xt!1k. ~2.2!

Parthasarathy and Sinha applied CF to the logistic, the ex
nential map for specific choice of parameters and initial c
ditions, and observed convergence to fixed points and p
odic points. Gueron was the first to present an analyt
description of CF@9#, as he proved that a certaink exists,
such that the system in Eq.~2.1! converges to a fixed point i
f is a unimodal function onR1.

An extension of CF to higher-dimensional maps is su
able for controlling spatiotemporal chaos in coupled m
lattices@10#. Parekhet al. added a constant feedbackk( i ) to
each lattice sitei with i 51, . . . ,n to stabilizen-dimensional
systems in any desired periodic state. They gave a nume
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CRISTIAN WIELAND PHYSICAL REVIEW E 66, 016205 ~2002!
example, in whichf denotes the logistic map, and remark
that in generalf has to be a unimodal function, as in E
~2.1!.

Parek and Shinha elaborated experimental results
simulating neuronal activities that have to be controlled@11#.
Furthermore, they observed chaos suppression with C
coupled He´non maps and in a coupled continuous Lore
system. Osipovet al. demonstrated that CF can be used
stabilize chaos in continuous time systems by adding an
pulsive function for the Duffing oscillator@12#. Further ex-
perimental studies exist in which alteration in dynamics
affected by perturbing a system variable: Corronet al. pre-
sented two experiments where control is activated if cer
variables exceed a threshold@13#, which was theoretically
reinterpreted for maps in@14#; Korpimäki and Norrdahl ob-
served in an outdoor experiment that reduction of all m
predators stabilized the former cyclic behavior of a sm
rodent population@15#; Hudsonet al. gained similar results
in an experiment with grouse and its parasites@16#.

Nevertheless, numerical evidence or experiments can
assure periodicity or convergence in general. With the exc
tion of the results in Ref.@9# for one-dimensional discret
maps with unimodal functions, neither rigorous conclusio
about a general class of nonlinear function nor how
choose an appropriate constant feedback can be foun
related literature. It is therefore necessary to deliver a pr
that chaos control inn-dimensional maps is achievable whe
constant feedback is applied. It follows that a systema
method to choose a constant feedback is included and th
general class of functions can be determined. This will
done for CF and MCF in the following sections.

III. ANALYTICAL RESULTS FOR CF AND MCF

Both feedback methods, CF and MCF, are introduced
the following by considering ann-dimensional map

xt115f~xt ,p!, ~3.1!

wherextPI denotes the vector of variables to be studied a
pPJ,Rr is a parameter vector, andf:I→I , Cr , r>1 with
I ,Rn is a nonlinear function vector. It is assumed that t
map may produce chaotic or cyclic behavior that has to
controlled.

Before CF and MCF are introduced, recall the next th
rem for stability of fixed points.

Theorem III.1.A fixed point x* of a mapf is asymptoti-
cally stable if all eigenvalues of the JacobianJ at x* have
moduli less than one.

Proof. See Ref.@17#. h
A lemma is needed to clarify where fixed points occur

discrete maps from a geometrical point of view, i.e., where
find a fixed point on the graph off. Obviously, forn51 fixed
points can only be found at intersections of the graph of
system function and the 45° line. This happens if

f ~x!5g~x! ~3.2!

with g(x)5x. This holds even in higher dimensions, as
shown in the following lemma.
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Lemma III.1Consider a mapf and let g(x)5x with x8
5@x(1), . . . ,x(n)#, xPRn, then the intersection

f~x!5g~x! ~3.3!

is a fixed point.
Proof. A fixed point is defined asx* 5f(x* ) and thus for

any x* it follows that x* 5g(x* ). h
Lemma III is needed to distinguish between the dynam

of a map by iteration and the rulef of a map. The reason fo
this is that the basic idea of CF and MCF is to shift the gra
of f such thatg intersectsf at any pointz, bearing in mind
that z possesses the stability condition from Theorem
This is formalized in the following.

A. CF

Applying CF means that the constant feedback vectok
PRn is added to the map at each discrete time stept. Or, in
other words, we add a constant feedback to each eleme
the function vector to achieve a shift of the graph of a fun
tion vector. For example, the graph of a one-dimensio
map is shifted up or down they axis if CF is applied.

Theorem III.2.Consider a map withf:I→I , Cr , r>1 and
I ,Rn, xtPRn. Let zPRn be a point withul i u,1 ; i, where
l i denotes thei th eigenvalue of the Jacobian off at z. Then
there exists a constant feedback vectorkPRn with

k5z2f~z! ~3.4!

such that

xt115f~xt ,p!1k ~3.5!

possesses a stable fixed point atx* 5z.
Proof. Eq. ~3.5! possesses a fixed point atx* 5z if f(z)

1k5g(z). Inserting Eq.~3.4! givesz5g(z). Thus,x* 5z is
an asymptotically stable fixed point because of Lemma II
and Theorem III.1. h

Note that shifting the graph yields a different basin
attraction. Since the class of function vectors is not furth
specified, it is difficult to give a general statement on the n
basin. Further conditions have to be set up to achieve at l
a subset of the new basin of attraction. This is done in
following proposition.

Proposition III.3. Let z lie in a compact setB,Rn. Let
any other pointxPB have maxulu,1 andxÞf(x)1k, thenB
is at least a subset of the basin of attraction for the fix
point x* 5z of the map in Eq.~3.5!.

Proof. The fixed pointx* 5z has only stable manifolds
described byB because everyxPB hasmaxulu,1. Hence,
the map in Eq.~3.5! converges tox* 5z for everyx0PB.h

It is rather more difficult to derive an approach deliverin
stable higher periodic orbits. Let us consider, for example
period two cycle of a one-dimensional map. Recall that m
in general have a period two cycle ifxp5 f „f (xp)…. Thus, we
are looking for intersections between the graph off „f (x)…
and the 45° lineg(x)5x. The cycle is stable if all periodic
5-2
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points have eigenvalues with a modulus smaller than one
applying CF to a one-dimensional map a period two cycle
obtained if

xp5 f „f ~xp!1k…1k, ~3.6!

sincek is added at each iteration. Consequently, the appl
tion of CF does not merely shift the graph off „f (x)…, but
changes the course and, as a consequence, the eigenval
points. Thus, Theorem III.2 is inessential in the case of s
bilizing higher periodic orbits. Furthermore, the origin
function vector cannot be used to determine periodic po
possessing the stability condition. But, by interpreting E
~3.6! as a new map, stability analysis of fixed points is a
plicable for further studies.

B. MCF

Two possible interpretations of MCF are offered. The fi
is to assume that the variable vectorxt can be superimpose
at each iteration by a constant feedback vectorkPRn. The
second is that after each iterationxt1k is computed and the
following control scheme results:

. . . f~xt211k!5xt→xt1k→f~xt1k!5xt11 . . . .

Thus, applying MCF causes, for example, the graph o
one-dimensional map to be shifted along thex axis. The
previous statements lead to the next theorem.

Theorem III.4. Consider a map withf:I→I , Cr , r>1 and
I ,Rn, xtPRn. Let zPRn be a point withul i u,1 ; i, where
l i denotes thei th eigenvalue of the Jacobian off at z. Then
there exists a constant feedback vectorkPRn with

k5z2f~z! ~3.7!

such that

xt11Äf ~xt1k,p! ~3.8!

possesses a stable fixed point atx* 5z2k.
Proof. Let f̃(x)5f(x1k). Then xt115 f̃(x) possesses a

fixed point if z2k5 f̃(z2k) and it follows thatz2k5f(z).
Thus, ifk5z2f(z) thenx* 5z2k is an asymptotically stable
fixed point of Eq.~3.8! because of Lemma III.1 and Theore
III.1. h

Since the graph is shifted, as in the case of CF, a n
basin of attraction is obtained. Further specifications of
function vector lead to the following proposition.

Proposition III.5Let z lie in a compact setB,Rn. Let any
other pointxPB have maxulu,1 with xÞf(x1k). Then
B2k5$yPRnuxPB,y5x2k% is at least a subset of the bas
of attraction for the fixed pointx* 5z2k of the map in Eq.
~3.8!.

Proof. Analogous to Proposition III.5 for CF, with th
difference thatB is shifted byk. h

The same causal relation as in the case of CF ma
Theorem III.4 inessential to deliver an appropriate choice
k and, consequently, to stabilize higher periodic orbits. Si
the graph of the function vector is changed we have to r
on the reinterpretation of the subjected map as a new m
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IV. NUMERICAL RESULTS

Recall that the aim of the preceding section was to pro
convergence of maps with a general class of function ve
if these maps are subjected to CF or MCF. The indeed v
general outcomes prove general applicability for a huge
riety of maps. But, since the graph of the function vector
shifted, it should be clear that a different basin of attract
for the new fixed point is obtained if CF or MCF is applie
Unfortunately, the basin of attraction remains unknow
without further restrictions regarding the function vector. A
a matter of fact, it is thus impossible to estimate the robu
ness of CF and MCF against noise in general. We can o
state that if the basin of attraction is a very small area, b
methods are more likely to be affected by noise than in
case of greater basins. Hence, further analytical results
not yet available and we have to rely on some numer
results in this section to obtain a deeper insight into CF a
MCF. Numerical results for CF and MCF are obtained
applying them to the well-investigated two-dimension
Hénon map, given by

S xt11

yt11
D 5f~xt ,yt!5S yt1c2axt

2

bxt
D , ~4.1!

where a,b,cPR are parameters. For many values ofa,b,
and c the map exhibits chaotic behavior@18#. In this work,
numerical results are performed with the parameter val
a51.2, b50.3, andc51. Hence, the greatest Lyapunov e
ponent of the map isL1'0.42. The Jacobian of Eq.~4.1!,

J5S 22ax 1

b 0D ~4.2!

has to be determined to find any pointz in Eq. ~4.1! that
satisfies the stability condition. The indext is disregarded
because we are not yet interested in the dynamical beha
of a map, but rather points on the function graph. The eig
values ofJ are

l1,252ax6A~a2x21b! ~4.3!

and from Eq.~4.3! it is easy to determine maxul1,2u,1. In-
serting the parameter values gives maxul1,2u,1 if xP B with
B5@20.291 67,0.291 67#, as seen in Fig. 1. Hence,z8
5„z(1) 0.3z(1)… for any z(1)PB. Recall thatB and B2k
are subsets of the basin of attraction for CF and MCF,
spectively; see Propositions III.3 and III.5. Any initial poin
in B or B2k will converge to the corresponding fixed poin

Note thatyt11 and, as a consequence,y* are predeter-
mined byxt sinceyt115bxt . From this it follows thatk(2)
can be neglected for CF and MCF and is set at 0. From sB
we can thus derive that a fixed point can be reached
applying CF or MCF ifk(1) varies in the intervalk(1)5
@21.1021,20.693 75#. Furthermore, the function graph o
the two-dimensional He´non map can be represented in on
two dimensions ifyt is interpreted as a predetermined co
stant. This makes it more comfortable to illustrate the me
ods graphically, because from the previous statementsf x(x)
5yt1121.2x2 is obtained for the uncontrolled map an
5-3
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CRISTIAN WIELAND PHYSICAL REVIEW E 66, 016205 ~2002!
f x
CF(x)5yt1121.2x21k(1) is obtained for CF and

f x
MCF(x)5yt1121.2@x1k(1)#2 for MCF.

A. CF

Let z85(0 0) with ul1,2u50.547 72 be the point to be
shifted along the ordinate. Insertingz into Eq. ~3.4! gives
k85(21 0). Hence, Eq.~4.1! is modified to

S xt11

yt11
D 5S yt1121.2xt

2

0.3xt
D 1S 21

0 D ~4.4!

and the new map possesses an asymptotically stable
point at x

*
8 5z85(0 0), as can be seen in Fig. 2~a!, with

yt5y* 50. The graph off x , with f x(0)51, is shifted down-
wards along the ordinate untilf x intersects the 45° line atz.
A dynamical presentation of CF is given in thext11 vs xt
plot in Fig. 2~b!. Starting from the initial conditionsx0
50.5 andy051, the map converges to the fixed point. T
iteratesxt lie on different graphs off x

CF , depending onyt ;
for instance, the first graph is plotted fromf x

CF(x)5y011
21.2x21k(1) and the second fromf x

CF(x)5y11121.2x2

1k(1).
Sometimes existing chaos has to be controlled, i.e., c

trol can only be switched on after some finite iterations of
map. In Fig. 3 the successive iterates of the He´non map

FIG. 1. Modulus of the greatest eigenvalue smaller than
obtained from Eq.~4.3! for the Hénon map (a51.2,b50.3,c51).
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subjected to CF after 50 and 200 iterations are depicted
absence of CF from 0<t<50 and from 151<t<200, the
map exhibits chaotic behavior. Nevertheless, applying
can be critical because it is not possible to achieve fr
Theorem III.2 the whole basin of attraction that guarante
convergence to a stable fixed point. This depends on
individual function vectorf and on the strength ofk. There-
fore, a basin of attraction is provided for the controlledk8
5(21 0) and the uncontrolledk85(0 0) case. A grid of
3003300 points from23<x0<3 and 23<y0<3 served
as initial conditions for the He´non map to find out whethe
the controlled system converges to the fixed point or diver
and whether the uncontrolled system converges to the
otic attractor or diverges.

The basin of attraction is depicted in Fig. 4, in which t
white area denotes the diverging set of initial conditions
both systems; the gray area denotes the attracting set o
chaotic attractor and the diverging set of the fixed point;
black area denotes the attracting set of the chaotic attra
and of the fixed point. As shown, the basin of attracti
shrinks if the map is subjected to CF. It is thus obvious t
CF can only be activated to control a chaotic map if a t
jectory starts in or enters the black area.

Now let us consider the effect of noise on CF. Hence,
independently identically distributed random variablee t

e FIG. 3. Iteratesxt of the Hénon map (a51.2, b50.3, c51)
controlled by CF withx051,y050.5 andk(1)50 for iteration 0
<t<50, k(1)521 for 51<t<150, k(1)50 for 151<t<200 and
k(1)521 for 201<t<250.
FIG. 2. ~a! The pointz85(0 0) on the graphf x of the Hénon map (a51.2, b50.3, c51) is shifted withk85(21 0) such that the
graph off x

CF intersects the 45° line atz and becomes an asymptotically stable fixed point. b! From the initial conditionsx050.5, y051 and
with k85(21 0) the Hénon map (a51.2, b50.3, c51) converges to the fixed pointz. For each iterationf x

CF(x)5yt1121.2x21k(1) is
plotted.
5-4
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;Normal(0,s) is added toxt11 at each time step while th
map is controlled by CF. The feedback is increased in 1
equal steps from21.1021,k1,20.693 75, which is the in-
terval that guarantees stable fixed points in a system with
noise. The standard deviation varies in the interval 0<s
<0.21 with Ds50.005. For eachs, k(1) combination a
transient phase of 5000 values ofxt is simulated to ensure
that a trajectory evolves near the fixed point attractor. A
suming that the process was ergodic, then anotherm55000
values ofxt were used to computeD ŝ5 ŝ2s of trajectories
starting atx05y050, whereŝ5A1/(m)( i 51

m (xt2 i2x* )2 is
the estimated standard deviation. Recall that the environm
around the fixed point is still nonlinear. ThenD ŝ can be
interpreted as additional fluctuation induced by the ad
random shocks. The result can be found in Fig. 5 as a c
tour plot. White denotess, k(1) combinations forcing the
map to diverge to infinity and darker gray levels deno
higher D ŝ values, i.e., higher additional fluctuations. Hig
values fork(1) go along with higher additional fluctuation
because of very long transient phases. In the interval21
<k(1)<20.9 we have a short transient phase and thus
additional fluctuation, but the map tends to be unstable.
estimated standard deviationŝ'0.68 of the chaotic He´non
map without noise serves as a reference case. If white n
is added, the chaotic system tends to be unstable fos
.0.04. Note that CF cannot filter noise but is able to red
the chaotic fluctuations, as can be seen in Fig. 5. Furt
more, if CF is applied the dynamical system becomes m
robust against noise since random variables with a stan
deviation five times higher than in the chaotic case can
added to the map.

Finally, we turn to accessing periodic orbits by applyi
CF. Therefore, the bifurcation diagram in Fig. 6~a! and the

FIG. 4. Basin of attraction of the controlled@CF,k85(210)#
and uncontrolled He´non map (a51.2, b50.3, c51). White area:
diverging set for both maps. Gray area: attracting set of the cha
attractor and diverging set of the fixed point. Black area: attrac
set of the fixed point and of the chaotic attractor.
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Lyapunov spectrum in Fig. 6~b! are computed for the con
trolled Hénon map. The feedback parameterk(1) is varied to
produce different system dynamics. The map is unstable
k(1),21.1021 and has fixed points for21.1021,k(1),
20.693 75. We can find a period doubling bifurcation
k(1)520.693 75, whereL150. Thus, periodic orbits can
be accessed fork(1).20.693 75. The map returns to a ch
otic phase fork(1).0.115, which is interrupted by som
stable higher periodic orbits. The map becomes unstable
parameter valuesk(1).0.187. As we can see, it is possib
to steer trajectories to different periodic orbits by simp
varying the feedback parameter.

B. MCF

Applying MCF to Eq. ~4.1! with k85„k(1) k(2)…, the
Hénon map is modified to

S xt11

yt11
D 5S @yt1k~2!#1c2a@xt1k~1!#2

b@xt1k~1!#
D . ~4.5!

tic
g

FIG. 5. Contour plot showsD ŝ5 ŝ2s for fixed points; initial
conditions:x050 andy050.

FIG. 6. ~a! Bifurcation diagram and~b! Lyapunov spectrum for
the Hénon map (a51.2, b50.3, c51) subjected to CF withx0

51 andy050.5 andk(1)5@21.1021,0.187#.
5-5
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FIG. 7. ~a! The pointz85(0 0) on the graphf x of the Hénon map (a51.2, b50.3, c51) is shifted withk85(21 0) such that the point
z2k on the graphf x

MCF intersects the 45° line and becomes an asymptotically stable fixed point.~b! From the initial conditionsx051.5,
y051 and withk85(21 0) the Hénon map (a51.2, b50.3, c51) converges to the fixed pointz2k. For each iterationf x

MCF5yt11
21.2@xt1k(1)# is plotted.
Eq

fix

-

n

ffi
ti

tic
th

e-
ges

ed
he
otes

he
rac-
ay
di-

otes
int

ed
s
a-

the
ay
otic
the
Let z85(0 0) with ul1,2u50.547 72 be the point to be
shifted along the ordinate. Insertingz in Eq. ~3.7! gives k8
5(21 0). Hence, inserting the parameter values into
~4.5! results in

S xt11

yt11
D 5S yt1121.2~xt21!2

0.3~xt21!
D ~4.6!

and the new map possesses an asymptotically stable
point at x

*
8 5z82k85(1 0), as seen in Fig. 7~a!, with yt

5y*50. The graph off x
MCF(x) is shifted to the right until it

intersects the 45° line atz2k. Figure 7~b! represents a dy
namical view on MCF with initial conditionsx051.5 and
y051. The iteratesxt converge to the fixed point and lie o
different graphs off x

MCF(x), depending onyt ; for instance,
the first graph is plotted fromf x

MCF(x)5y01121.2@x
1k(1)#2.

In Fig. 8 an example is given to demonstrate the e
ciency of MCF if the system already evolves on the chao
attractor. Starting from the initial conditionsx051 and y0
50.5, the He´non map evolves 50 iterations on a chao
attractor before the control method is activated. Then
map rapidly converges to the fixed pointx

*
8 5z82k8

FIG. 8. Iteratesxt ~dotted-line curve! andyt ~solid line curve! of
the Hénon map (a51.2, b50.3, c51) controlled by MCF with
x051,y050.5 andk(1)50 for iteration 0<t<50, k(1)521 for
51<t<150, k(1)50 for 151<t<200, andk(1)521 for 201<t
<250.
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5(1 0). Setting MCF off after 150 iterations, the map r
verts to chaotic behavior and after 200 iterations it conver
to z82k8, as it is again subjected to MCF.

The basin of attraction for the controlled and uncontroll
Hénon map is depicted in Fig. 9. It is obtained using t
same procedure as in the case of CF. The white area den
the diverging set of initial conditions of both systems; t
light gray area denotes the attracting set of the chaotic att
tor and the diverging area of the fixed point; the dark gr
area denotes the attracting set of the fixed point and the
verging area of the chaotic attractor; the black area den
the attracting set of the chaotic attractor and the fixed po
attractor. The basin of attraction shrinks if MCF is appli
and, in addition, it is also shifted to the right. It is thu
obvious that MCF can only succeed in controlling the ch

FIG. 9. Basin of attraction of the controlled@MCF,k8
5(210)# and uncontrolled He´non map (a51.2, b50.3, c51).
White area: maps diverge. Light gray area: attracting set of
chaotic attractor and diverging set for the fixed point. Dark gr
area: attracting set of the fixed point and diverging set of the cha
attractor. Black area: attracting set of the fixed point and of
chaotic attractor.
5-6
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otic Hénon map if it is activated when a trajectory enters t
black area.

The influence of noise on MCF is investigated in the sa
manner and with the same pseudorandom-numbers as i
case of CF. Different initial conditionsx051 andy050.5 are
used, but the results differ only marginally, i.e., almost t
same values forD ŝ are obtained. This stems from the fa
that the same points of the graph of the function vector
shifted as in the case of CF, possessing the same dynam
properties. The only difference is that the graph is n
shifted along the abscissae. Consequently, MCF is also
able to filter noise, but is robust against noise and reduces
chaotic fluctuations.

Finally, we turn to accessing periodic orbits by applyi
MCF. Therefore, the bifurcation diagram in Fig. 10~a! and
the Lyapunov spectrum in Fig. 10~b! are computed for the
controlled Hénon map. The feedback parameterk(1) is var-
ied to produce different system dynamics. The map is
stable for k(1),21.1021 and has fixed points for
21.1021,k(1),20.693 75. We can find a period doublin
bifurcation atk(1)520.693 75, whereL150. Thus, peri-
odic orbits can be accessed fork(1).20.693 75. The map
returns to a chaotic phase atk(1)'0.115, which is inter-
rupted by some stable higher periodic orbits. The map
comes unstable for parameter valuesk(1).0.187. As we can
see, it is possible to steer trajectories to different perio
orbits by simply varying the feedback parameter. Note t
the identical Lyapunov spectrum is obtained as in the cas
CF. Only one difference arises, since applying MCF yield
system breakdown fork(1).0.1622 instead ofk(1)
.0.187 for CF. Furthermore, the bifurcation diagram in F
10~a! is only shifted in the phase space by the amount
k(1) if it is compared with the bifurcation diagram for CF

C. Determining the constant feedback vector from time series

In the preceding section the calculation of the const
feedback vectork is based on thea priori knowledge of the
map, which in most practical cases is unrealistic. There

FIG. 10. ~a! Bifurcation diagram and~b! Lyapunov spectrum of
the Hénon map (a51.2, b50.3, c51) subjected to MCF withx0

51 andy050.5 andk(1)5@21.1021,0.1622#.
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two ways to solve this dilemma. First, if the dimension of t
system is known each elementk( i ), i 51, . . . ,n of k could
be successively increased or decreased. Unfortunately,
gives 2n possible combinations to proceed, starting fromk
50, and is thus inapplicable for higher dimensions. A mu
better way is to determinek from time series information.
This is done in this section with the help of a simple alg
rithm, which may be slow due to computing time but illu
trates the theoretical context. Conceptually, the algorit
structures as follows:~1! sort the time series to find neares
neighbor points,~2! approximate the maximum eigenvalu
and ~3! calculatek from nearest-neighbor points.

~1! Consider a time series (x1 ,x2 , . . . ,xt) with xiPRn.
The first step is to form pairs$xi ,xj%, where anxj is assigned
to anxi if the condition

minixi2xj i,v ; j Þ i ~4.7!

is satisfied. Herei•i denotes the Euclidean norm andv is a
suitable radius of a ball aroundxi . Thus, a pair$xi ,xj% con-
tains nearest neighbors with a distance smaller thanv.

~2! Starting fromxi andxj , respectively, we can observ
the next iterationsxi 11 andxj 11 and approximate the grea
est eigenvalue atxi with

lim
v→0

ixj 112xi 11i
ixj2xi i

'lmaxi
. ~4.8!

This approach is used, for example, in the Wolf algorithm
calculate the greatest Lyapunov exponent from time se
@19#.

~3! If ulmaxi
u,1, thenxi is a possible new fixed point

Thus, from Eq.~3.7! and Eq. ~3.4! the constant feedbac
vector can be determined byk5xi2f(xi), where f(xi)
5xi 11, and it follows that

k5xi2xi 11 . ~4.9!

This algorithm is obviously vague for a great radiusv or
in the presence of noise. In this case a set$xt% of several
nearby points can be used to estimate the eigenvalue by
squares, as, for example, in Ref.@20#. Additionally, we have
to estimate the real successorxt11.

Note that we do not use a time series reconstructed fro
one-dimensional time series by a time-delay method@21#.
Although first numerical results show that the maximal
genvalue can be approximated well, it is not yet possible
calculatek from this kind of data.

V. CONCLUSION

With CF and MCF, simple methods for controlling cha
in higher-dimensional discrete maps have been introduce
was shown analytically that chaotic attractors can be c
verted to fixed point attractors if a constant feedback vec
is added to the system function~CF! or if the input vector is
superimposed by a constant feedback vector~MCF!. The ba-
sic idea in both methods is to shift the graph of the funct
vector of a map. A method to choose an appropriate cons
5-7
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feedback vector for controlling chaotic systems is achie
from Theorems III.2 or III.4. It is obvious, because of th
weak requirements referring to the function vectorf of a
map, that CF and MCF guarantee chaos control for alm
every map, e.g., high-dimensional coupled map lattices.
fortunately, this good news makes it difficult to find a bas
of attraction for initial conditions such that a map is attrac
to the fixed point. Therefore, rigorous conditions for syst
function vectors have to be set up, as Gueron illustrated
the one-dimensional case@9#. However, as it is known thatz
in Theorem III.2 and z2k in Theorem III.4 represen
asymptotic stable fixed points, it is guaranteed that there
ist at least small neighborhoods of initial conditions conve
ing to z andz2k, respectively. An extension of this idea wa
formalized in Propositions III.3 and III.5. Numerical ex
amples were given as CF and MCF were applied to
Hénon map; it was also shown that periodic states are ac
sible.

Besides their simple implementation, since we do
have to collect data for the computation of parameter per
bations or feedbacks, both CF and MCF methods pos
further advantages with regard to the other methods. S
no updated information on the state of the system is requi
e

.
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no latency due to measuring and computing control signa
wasted and thus chaos control in the GHz range is ima
able. Furthermore, by applying CF or MCF, the dimensio
ality of a system does not increase, unlike with the DF
method, becausek is a constant. Due to robustness agai
noise, CF and MCF are superior to OGY since the use
linear approximation in small vicinities of certain points
renounced. These methods do not change system param
which may be fixed by the properties of the investigat
map. Additionally, note that CF and MCF can be applied
nonchaotic maps, e.g., maps converging to a stable fi
point can be steered to other fixed points or chaotic region
desired. As for OGY, targeting and DFC, the application
CF and MCF does not implya priori knowledge of the sys-
tem equations, since control can be achieved by success
ascending or descending the constant feedback paramet
addition, it has been shown for the first time of CF and MC
that possible new fixed points as well as the constant fe
back vector can be determined from time series informati
Finally, the application of CF and MCF is not limited b
certain characteristics of a map, like finite torsion in the ca
of DFC, or relatively small Lyapunov exponents compared
the discrete time steps, as in the case of OGY.
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