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Controlling chaos in higher dimensional maps with constant feedback: An analytical approach

Cristian Wieland
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We introduce two methods to control chaos in higher-dimensional discrete maps with constant feedback. It
is analytically shown for a general class of function vectors that chaotic attractors can be converted into fixed
point attractors. Additionally, a method to choose an appropriate constant feedback is presented. The applica-
tion of these methods does not requar@riori knowledge of system equations, since time series information
can be used. Desired periodic orbits can be accessed by varying the constant feedback. As an example, the
methods are applied to the hien map.
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[. INTRODUCTION merical results in the higher-dimensional case. Hence, there
exists a lack of theory of controlling chaos in higher-
After the detection of chaos, the current opinion of scien-dimensional discrete maps with CF. The question to be dealt
tists was that chaotic motion was neither predictable nor conwith is thus whether there is a way to control chaos in
trollable because of the sensitive dependence on initial cori-dimensional discrete maps by simply adding a constant
ditions of chaotic systems, e.g., see Rél. Perturbations in  feedback. For this, the original CF and a modified constant
the system’s behavior for the purpose of control would onlyfeedback methodMCF) are investigated in Sec. Ill. It will
generate different chaotic behavior. This was a fallacy, as thee proven analytically, and not only by numerical results,
pioneering work of Ott, Grebogi, and York©GY-method  that both methods are suitable for controlling chaos in
in 1990 showed. Since then the problem of controlling chao$igher-dimensional discrete systems. Furthermore, a method
has been an attractive field of research, especially amoni§r choosing an appropriate control parameter is also pro-
physicists over the past decade, yielding two ways to controfided. In Sec. IV, some numerical results are presented. In
chaos. The first way is to stabilize unstable periodic orbitsaddition it will be shown that possible new fixed points as
embedded within a chaotic attractor represented, for exwell as the constant feedback vector can be determined from
ample, by the well-known OGY methof?] that applies time series information. This paper closes with a conclusion
small perturbations, determined by closed-loop control techin Which the results for CF and MCF are summarized and
niques, to an accessible system parameter and by Pyrag&gmpared to other methods.
delayed feedback contrdDFC) [3], where continuous linear
feedback is added to the system at ea_ch computational time Il PREVIOUS WORK
step. The second way, called suppressing chaos, is to convert
chaotic system behavior into desired periodic behavior. Parthasarathy and Sinl8] presented a simple method
Some well-known methods are, for example, adaptive conealled constant feedback to control chaotic oscillations in
trol algorithms such af4,5], the use of noisg6,7], and the  one-dimensional discrete maps of the form
constant feedback methd@F) [8], which will be investi-
gated in detail in this work. Although a great number of Xes1=F(X0), (2.1
publications on controlling chaos exist, many approaches
suffer from a lack of precise analytical description, i.e., the,

o . o ) i where f:1—1 is a C? unimodal function on the interval
applicability of methods is only verified numerically or in an | C[0). A constant feedback with k< R is added at each

exper@mental environment, note th"’.‘t numerical evidence Olieration to the right-hand side of E(.1) and it follows that
experiments cannot assure periodicity or convergence in gen- '

eral. In Ref.[9] examples are listed. This procedure has the
disadvantage that a transfer of chaos control methods from X1 =) +k. (2.2
certain numerical examples to other more practical cases is
likely to fail. A precise analytical description, although in Parthasarathy and Sinha applied CF to the logistic, the expo-
many cases hard to meet, is thus advisable and will be folnential map for specific choice of parameters and initial con-
lowed when we introduce methods for controlling chaos. ditions, and observed convergence to fixed points and peri-
Section Il commences with an overview of previous workodic points. Gueron was the first to present an analytical
on CF. There it will be shown that publications on CF eitherdescription of CH9], as he proved that a certaknexists,
concentrated on a special kind of one-dimensional discreteuch that the system in E€R.1) converges to a fixed point if
map with unimodal system function or are restricted to nu{ is a unimodal function ok ™.
An extension of CF to higher-dimensional maps is suit-
able for controlling spatiotemporal chaos in coupled map
*Present address: Department of Economics, University ofattices[10]. Parekhet al. added a constant feedbakk) to
Osnabrueck, 49069 Osnabrueck, Germany; electronic addressach lattice sité with i=1, ... n to stabilizen-dimensional
cwieland@oec.uni-osnabrueck.de systems in any desired periodic state. They gave a numerical
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example, in whichf denotes the logistic map, and remarked Lemma lll.1Consider a mag and letg(x)=x with x’

that in generalf has to be a unimodal function, as in Eg. =[x(1),....,x(n)], xe R", then the intersection
(2.2).
Parek and Shinha elaborated experimental results by f(X)=g(x) (3.3

simulating neuronal activities that have to be contro[l&d.
Furthermore, they observed chaos suppression with CF i% a fixed point
coupled Haon maps and in a coupled continuous Lorenz point.

system. Osipo\et al. demonstrated that CF can be used toan:/D)r(OOiff lfAc\)lfllc))(vevg ﬁ?;?;[('s_dge;f)'(n?d ag, =f(x,) and thus [fjo r
. X - ; . . any X, L =0(X).
stabilize chaos in continuous time systems by adding an im Lemma Ill is needed to distinguish between the dynamics

pulsive function for the Duffing oscillatdrl2]. Further ex- of a map by iteration and the rufeof a map. The reason for
perimental studies exist in which alteration in dynamics Sthis is that the basic idea of CF and MCE is to shift the graph

affected by perturbing a system variable: Coreiral. pre- r?f f such thatg intersectsf at any pointz, bearing in mind

sented two experiments where control is activated if certai That the stabilit dition f Th "
variables exceed a threshdd3], which was theoretically at z possesses ine stabrity condition from theorem 1.
This is formalized in the following.

reinterpreted for maps ifil4]; Korpimai and Norrdahl ob-

served in an outdoor experiment that reduction of all main

predators stabilized the former cyclic behavior of a small A. CF

rodent populatiorf15]; Hudsonet al. gained similar results

in an experiment with grouse and its parasfte§].
Nevertheless, numerical evidence or experiments cann%i

assure periodicity or convergence in geinefa': With the €XCeRhe function vector to achieve a shift of the graph of a func-
tion of the results in Ref[9] for one-dimensional discrete . . .
tion vector. For example, the graph of a one-dimensional

e 1001 SO0 ap s sitec p o oun i f G i apled,
9 . Theorem Ill.2.Consider a map withi:.| —1, C", r=1 and

choose an appropriate constant feedback can be found k R", x, < R". Let ze R" be a point with| ;| <1 V i, where

related literature. It is therefore necessary to deliver a proo. . . i
that chaos control im-dimensional maps is achievable when ;' denot_es théth eigenvalue of the Jacobl:an .bﬁt z Then
LIhere exists a constant feedback vedterR" with

constant feedback is applied. It follows that a systemati
method to choose a constant feedback is included and that a k=2z—1(2) (3.4)
general class of functions can be determined. This will be

done for CF and MCF in the following sections.

Applying CF means that the constant feedback vektor
R" is added to the map at each discrete time $tepr, in
her words, we add a constant feedback to each element of

such that
I1l. ANALYTICAL RESULTS FOR CF AND MCF

Both feedback methods, CF and MCF, are introduced in
the following by considering an-dimensional map

Xi+1=F(X;,p) +K (3.5

possesses a stable fixed poinkat=z
Xes 1= f(X,P) 3.1) Proof. Eq. (3.5 possesses a fixed point &t =z if f(2)
th1 tEn +k=09(2). Inserting Eq.(3.4) givesz=g(2). Thus,x, =z is
wherex, e | denotes the vector of variables to be studied andn @symptotically stable fixed point because of Lemma Iil.1
peJCR' is a parameter vector, arfd —1, C', r=1 with  and Theorem IIl.1. _ _ n
ICR" is a nonlinear function vector. It is assumed that the NOte that shifting the graph yields a different basin of
map may produce chaotic or cyclic behavior that has to p&ttraction. Since the class of function vectors is not further

controlled. specified, it is difficult to give a general statement on the new
Before CF and MCF are introduced. recall the next theoPasin. Further conditions have to be set up to achieve at least
rem for stability of fixed points. a subset of the new basin of attraction. This is done in the

Theorem III.1A fixed pointx, of a mapf is asymptoti- following proposition.

cally stable if all eigenvalues of the Jacobidrat x, have Proposition I11.3. Let z lie in a compact seBCR". Let
moduli less than one. any other poink e B have maj|<1 andx# f(x) + k, thenB

Proof See Ref[17]. 0 is at least a subset of the basin of attraction for the fixed

Alemma is needed to clarify where fixed points occur inPCINt X, =z of the map in Eq/(3.5). _
discrete maps from a geometrical point of view, i.e., where to  Proof. The fixed pointx, =z has only stable manifolds
find a fixed point on the graph 6f Obviously, fom=1 fixed ~ described byB because everye B hasmaxx|<1. Hence,
points can only be found at intersections of the graph of thdh® map in Eq(3.5 converges tc, =z for everyxoe B.[J

system function and the 45° line. This happens if It is rather more difficult to derive an approach delivering
stable higher periodic orbits. Let us consider, for example, a
f(x)=g(x) (3.2 period two cycle of a one-dimensional map. Recall that maps

in general have a period two cyclexf= f(f(x;)). Thus, we
with g(x)=x. This holds even in higher dimensions, as isare looking for intersections between the graphf @f(x))
shown in the following lemma. and the 45° lingg(x)=x. The cycle is stable if all periodic
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points have eigenvalues with a modulus smaller than one. By IV. NUMERICAL RESULTS
20DIvi pe ) . : . . .
ng;ﬁg% %F o a one-dimensional map a period two cycle is Recall that the aim of the preceding section was to prove

convergence of maps with a general class of function vector
xp=f(F(xp) +K)+k, (3.9  if these maps are subjected to CF or MCF. The indeed very

general outcomes prove general applicability for a huge va-
sincek is added at each iteration. Consequently, the applicariety of maps. But, since the graph of the function vector is
tion of CF does not merely shift the graph tff (x)), but  shifted, it should be clear that a different basin of attraction
changes the course and, as a consequence, the eigenvaluefoofthe new fixed point is obtained if CF or MCF is applied.
points. Thus, Theorem II1.2 is inessential in the case of staUnfortunately, the basin of attraction remains unknown,
bilizing higher periodic orbits. Furthermore, the original without further restrictions regarding the function vector. As
function vector cannot be used to determine periodic points matter of fact, it is thus impossible to estimate the robust-
possessing the stability condition. But, by interpreting Eg.ness of CF and MCF against noise in general. We can only
(3.6) as a new map, stability analysis of fixed points is ap-state that if the basin of attraction is a very small area, both

plicable for further studies. methods are more likely to be affected by noise than in the
case of greater basins. Hence, further analytical results are
B. MCE not yet available and we have to rely on some numerical

results in this section to obtain a deeper insight into CF and
MCF. Numerical results for CF and MCF are obtained by

applying them to the well-investigated two-dimensional

Henon map, given by

Two possible interpretations of MCF are offered. The first
is to assume that the variable vecigrcan be superimposed
at each iteration by a constant feedback ve&tarR". The
second is that after each iteratigpt k is computed and the

following control scheme results: ( yi+c—axt

bx,

Xt+1

=f(x¢,y0) = , 4.1

oo F( o TR =X X K= TG FK) =X e Yi+1

Thus, applying MCF causes, for example, the graph of avherea,b,ce R are parameters. For many valuesayb,
one-dimensional map to be shifted along theaxis. The andc the map exhibits chaotic behavift8]. In this work,
previous statements lead to the next theorem. numerical results are performed with the parameter values

Theorem I11.4 Consider a map witfil—1, C", r=1 and a=1.2,b=0.3, andc=1. Hence, the greatest Lyapunov ex-
ICR", x,e R". Let ze R" be a point with\;|<1 V i, where  ponent of the map i&;~0.42. The Jacobian of E¢4.1),
\; denotes theth eigenvalue of the Jacobian bat z. Then
there exists a constant feedback vedterR" with J= —2ax 1)
b 0

k=z—1(2) (3.7

(4.2

has to be determined to find any pomin Eq. (4.1 that
such that satisfies the stability condition. The indéxs disregarded
because we are not yet interested in the dynamical behavior

Xer1 =106 K,p) 38 of a map, but rather points on the function graph. The eigen-
possesses a stable fixed poinat=z—k. values ofJ are
Proof. Let f(x)=f(x+k). Thenx,,,=f(X) possesses a i o= —ax= \/(aszb) 4.3

fixed point if z—k=f(z—k) and it follows thatz—k="f(2).

Thus, ifk=z—f(2) thenx, =z—k is an asymptotically stable and from Eq.(4.3) it is easy to determine mi ,/<1. In-

fixed point of Eq.(3.8) because of Lemma lll.1 and Theorem serting the parameter values gives fiAax| <1 if xe B with

l.1. O B=[—-0.29167,0.291 6]/ as seen in Fig. 1. Hence
Since the graph is shifted, as in the case of CF, a new(z(1) 0.3(1)) for any z(1) e B. Recall thatB andB_

basin of attraction is obtained. Further specifications of theare subsets of the basin of attraction for CF and MCF, re-

function vector lead to the following proposition. spectively; see Propositions 1.3 and III.5. Any initial point
Proposition Ill.5Let zlie in a compact seBCR". Letany in B or B_ will converge to the corresponding fixed point.
other pointxe B have max\|<1 with x#f(x+k). Then Note thaty,,, and, as a consequencg, are predeter-

B_={ye R"|xe B,y=x—k} is at least a subset of the basin mined byx; sincey, ;=bx;. From this it follows thak(2)
of attraction for the fixed poinx, =z—k of the map in Eq. can be neglected for CF and MCF and is set at 0. FrorB set

(3.9. we can thus derive that a fixed point can be reached by
Proof. Analogous to Proposition 1l1.5 for CF, with the applying CF or MCF ifk(1) varies in the intervak(1)=
difference thaB is shifted byk. O [—1.1021;-0.693 79. Furthermore, the function graph of

The same causal relation as in the case of CF makethe two-dimensional Hgon map can be represented in only
Theorem IIl.4 inessential to deliver an appropriate choice fotwo dimensions ify, is interpreted as a predetermined con-
k and, consequently, to stabilize higher periodic orbits. Sincestant. This makes it more comfortable to illustrate the meth-
the graph of the function vector is changed we have to relyods graphically, because from the previous statemkyi9
on the reinterpretation of the subjected map as a new map=y,+1—1.2x? is obtained for the uncontrolled map and
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FIG. 1. Modulus of the greatest eigenvalue smaller than one FIG. 3. lteratesx, of the Heon map @=1.2,b=0.3,c=1)
obtained from Eq(43) for the Hanon map e: 1.2pb=0.3¢c= 1) controlled by CF WIthX0:1,y0:O.5 andk(l):() for iteration O
<t=<b50, k(1)=—1 for 51=<t=<150, k(1)=0 for 151=<t=<200 and

fCF(x)=y,+1-1.2%+k(1) is obtained for CF and k(1)=—1 for 201=t<250.

MCF —
fi “7(x) =y +1- 1. x+k(1)]? for MCF. subjected to CF after 50 and 200 iterations are depicted. In
absence of CF from €t<50 and from 15%t=<200, the
A. CF map exhibits chaotic behavior. Nevertheless, applying CF

can be critical because it is not possible to achieve from
Theorem 111.2 the whole basin of attraction that guarantees
convergence to a stable fixed point. This depends on the
individual function vectorf and on the strength &. There-

Let Z=(0 0) with |\;J=0.54772 be the point to be
shifted along the ordinate. Insertirginto Eq. (3.4) gives
k'=(—1 0). Hence, Eq(4.1) is modified to

Xii1 i+ 1—1.2¢2 -1 fore, a basin of attraction is provided for the controlled
( ): t) ( ) (4.9 =(—1 0) and the uncontrolledd’=(0 0) case. A grid of
Yt+1 0.3 0 300% 300 points from—3<=x,<3 and —3<y,<3 served

as initial conditions for the Heon map to find out whether
%he controlled system converges to the fixed point or diverges

point atx, =2'=(0 0), as can be seen in Fig(@ with 54 \whether the uncontrolled system converges to the cha-
Yi=Y4 =0. The graph of,, with f,(0)=1, is shifted down- i~ attractor or diverges.

wards along the ordinate unfi} intersects the 45° line at The basin of attraction is depicted in Fig. 4, in which the
A dynamical presentation of CF is given in the.1 VS X;  \yhite area denotes the diverging set of initial conditions of
plot in Fig. 2b). Starting from the initial conditionst,  poth systems; the gray area denotes the attracting set of the
=0.5 andyo=1, the map converges to the fixed point. The chaotic attractor and the diverging set of the fixed point; the
iteratesx, lie on different graphs of, ™, depending ory;;  plack area denotes the attracting set of the chaotic attractor
for instance, the first graph is plotted frofif"(x)=yo+1  and of the fixed point. As shown, the basin of attraction
—1.2x>+k(1) and the second fromfi{™(x)=y,+1—1.2x>  shrinks if the map is subjected to CF. It is thus obvious that
+k(1). CF can only be activated to control a chaotic map if a tra-
Sometimes existing chaos has to be controlled, i.e., corjectory starts in or enters the black area.

trol can only be switched on after some finite iterations of the Now let us consider the effect of noise on CF. Hence, an
map. In Fig. 3 the successive iterates of thenéte map independently identically distributed random variabie

and the new map possesses an asymptotically stable fix

a) b)

xi+l,ﬁ‘CF

|
|
|
|
|
|
|
|
-15 -1 -05 0 05 1 15

FIG. 2. (a) The pointz =(0 0) on the grapt, of the Heon map &=1.2,b=0.3,c=1) is shifted withk’=(—1 0) such that the
graph off EF intersects the 45° line atand becomes an asymptotically stable fixed poipEdom the initial conditionx,=0.5,y,=1 and
with k' =(—1 0) the H@on map 6=1.2,b=0.3,c=1) converges to the fixed poiat For each iteratiorifF(x)=yt+1—1.2x2+ k(1) is
plotted.
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-3 0 3
0.20

3

0.15

0.10 |

<0.02

0.05

0.00 T

k(1)

-3 0 3 FIG. 5. Contour plot showas=s— ¢ for fixed points; initial
o conditions:x,=0 andy,=0.
FIG. 4. Basin of attraction of the controllddCF k' =(—10)] - for th
and uncontrolled Ason map @=1.2,b=0.3,c=1). White area: Lyapunoy spectrum in Fig. (B) are computed .or t .e con-
diverging set for both maps. Gray area: attracting set of the chaotitolled Henon map. The feedback parameiet) is varied to

attractor and diverging set of the fixed point. Black area: attractingProduce different system dynamics. The map is unstable for
set of the fixed point and of the chaotic attractor. (1)<—1.1021 and has fixed points for 1.102k k(1)<

—0.69375. We can find a period doubling bifurcation at
~Normal0,0) is added tax,. ; at each time step while the k(1)=—0.69375, where\;=0. Thus, periodic orbits can
map is controlled by CF. The feedback is increased in 10tpe accessed fd(1)>—0.693 75. The map returns to a cha-
equal steps from- 1.1021k k; < —0.693 75, which is the in- otic phase fork(1)>0.115, which is interrupted by some
terval that guarantees stable fixed points in a system withouitable higher periodic orbits. The map becomes unstable for
noise. The standard deviation varies in the intervalc®®  parameter valuek(1)>0.187. As we can see, it is possible
<0.21 with Ac=0.005. For eachr, k(1) combination a to steer trajectories to different periodic orbits by simply
transient phase of 5000 values xfis simulated to ensure varying the feedback parameter.
that a trajectory evolves near the fixed point attractor. As-
suming that the process was ergodic, then anatie5000 B. MCF
values ofx; were used to cqmputAs= s— o of trajectories Applying MCF to Eq.(4.1) with k'=(k(1) k(2)), the
starting atx,=Yyo=0, wheres=\1/(m)=" ,(x,_;i—X,)? is  Henon map is modified to
the estimated standard deviation. Recall that the environment
around the fixed point is still nonlinear. Theks can be (Xt“) _
interpreted as additional fluctuation induced by the added e
random shocks. The result can be found in Fig. 5 as a con-
tour plot. White denotesr, k(1) combinations forcing the
map to diverge to infinity and darker gray levels denote

higher As values, i.e., higher additional fluctuations. High
values fork(1) go along with higher additional fluctuations |
because of very long transient phases. In the intervél x,
<Kk(1)=-0.9 we have a short transient phase and thus les: _ |
additional fluctuation, but the map tends to be unstable. The

estimated standard deviati&=0.68 of the chaotic Aeon 2
map without noise serves as a reference case. If white nois
is added, the chaotic system tends to be unstablesfor ¢ -
>0.04. Note that CF cannot filter noise but is able to reduce4;
the chaotic fluctuations, as can be seen in Fig. 5. Further -1
more, if CF is applied the dynamical system becomes more
robust against noise since random variables with a standar 1o 06
deviation five times higher than in the chaotic case can be
added to the map. FIG. 6. (a) Bifurcation diagram andb) Lyapunov spectrum for
Finally, we turn to accessing periodic orbits by applyingthe Heon map 6=1.2,b=0.3,c=1) subjected to CF withx,
CF. Therefore, the bifurcation diagram in Figapand the =1 andy,=0.5 andk(1)=[—1.1021,0.18T.

(4.5

[yi+k(2)]+c—a[x;+ k(l)]2>
b[x;+k(1)]

14

i) 0.2 0.2
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FIG. 7. (a) The pointz’' = (0 0) on the grapli, of the He®on map A=1.2,b=0.3,c=1) is shifted withk’ =(—1 0) such that the point

z—k on the graphfMcF

intersects the 45° line and becomes an asymptotically stable fixed fiifirom the initial conditions¢,=1.5,

yo=1 and withk’=(—1 0) the H@mon map &=1.2,b=0.3,c=1) converges to the fixed poiatk. For each iteratiorf“F=y,+1

—1.24x,+k(1)] is plotted.

Let Z=(0 0) with [\;,/=0.547 72 be the point to be =(1 0). Setting MCF off after 150 iterations, the map re-

shifted along the ordinate. Insertirgin Eq. (3.7) givesk’  verts to chaotic behavior and after 200 iterations it converges
=(—1 0). Hence, inserting the parameter values into Edio 7 —k’, as it is again subjected to MCF.

(4.5 results in

The basin of attraction for the controlled and uncontrolled

Henon map is depicted in Fig. 9. It is obtained using the

(4.6

(Xt+l> _
Yi+1

2
Yt 1-1.2x—1) same procedure as in the case of CF. The white area denotes
0.3(x,—1) the diverging set of initial conditions of both systems; the

light gray area denotes the attracting set of the chaotic attrac-
and the new map possesses an asymptotically stable fixdar and the diverging area of the fixed point; the dark gray
point atx, =2z —k’=(1 0), as seen in Fig. (@, with y, area denotes the attracting set of the fixed point and the di-
=y, =0. The graph of ¥'°F(x) is shifted to the right until it verging area of the chaotic attractor; the black area denotes
intersects the 45° line @ k. Figure 7b) represents a dy- the attracting set of the chaotic attractor and the fixed point
namical view on MCF with initial conditions,=1.5 and ~ attractor. The basin of attraction shrinks if MCF is applied

Yo=1. The iteratex; converge to the fixed point and lie on
different graphs of }'“F(x), depending ory, ; for instance,
the first graph is plotted fromfY < (x)=yy+1—1.2x
+k(1)72

In Fig. 8 an example is given to demonstrate the effi-
ciency of MCF if the system already evolves on the chaotic
attractor. Starting from the initial conditiong,=1 andy,
=0.5, the Haon map evolves 50 iterations on a chaotic
attractor before the control method is activated. Then the
map rapidly converges to the fixed point, =2 —k’

0.5

Xt, Yt 0

-05

3

Yo O

-3

and, in addition, it is also shifted to the right. It is thus
obvious that MCF can only succeed in controlling the cha-

-3

-3 0
0 50 100 150 200 250 o
t
FIG. 9. Basin of attraction of the controlled MCF k’
FIG. 8. Iteratex, (dotted-line curveandy, (solid line curve of =(—10)] and uncontrolled AHson map 6=1.2,b=0.3,c=1).

the Hexon map 6=1.2,b=0.3,c=1) controlled by MCF with  White area: maps diverge. Light gray area: attracting set of the
Xo=1Yo=0.5 andk(1)=0 for iteration 0<t<50, k(1)=—1 for chaotic attractor and diverging set for the fixed point. Dark gray
51=<t=<150, k(1)=0 for 151<t=<200, andk(1)=—1 for 201<t area: attracting set of the fixed point and diverging set of the chaotic

<250.

attractor. Black area: attracting set of the fixed point and of the
chaotic attractor.
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two ways to solve this dilemma. First, if the dimension of the
system is known each elemek(i), i=1, ... n of k could

be successively increased or decreased. Unfortunately, this
gives 2" possible combinations to proceed, starting frem
=0, and is thus inapplicable for higher dimensions. A much
better way is to determink from time series information.
This is done in this section with the help of a simple algo-
rithm, which may be slow due to computing time but illus-
trates the theoretical context. Conceptually, the algorithm
structures as follows(1) sort the time series to find nearest-
neighbor points(2) approximate the maximum eigenvalue,
and (3) calculatek from nearest-neighbor points.

NNAYRN (1) Consider a time series<{,X,, ... X)) with x;eR".

. . T The first step is to form pairs , X}, where ar; is assigned

10 06 Ky 02 %2 to anx; if the condition
FIG. 10. (a) Bifurcation diagram andb) Lyapunov spectrum of min|x—xjll<eo Vj#i 4.7
the Henon map 6=1.2,b=0.3,c=1) subjected to MCF witlx,
=1 andy,=0.5 andk(1)=[—1.1021,0.162P is satisfied. Herd - || denotes the Euclidean norm andis a

suitable radius of a ball around. Thus, a paifx;,x;} con-
otic Henon map if it is activated when a trajectory enters thetains nearest neighbors with a distance smaller than
black area. (2) Starting fromx; andx;, respectively, we can observe
The influence of noise on MCF is investigated in the saméhe next iterations;  ; andx;,; and approximate the great-
manner and with the same pseudorandom-numbers as in tlest eigenvalue at; with
case of CF. Different initial conditions,=1 andy,=0.5 are
used, but the results differ only marginally, i.e., almost the

same values foAs are obtained. This stems from the fact
that the same points of the graph of the function vector are

shifted as in the case of CF, possessing the same dynamicphis approach is used, for example, in the Wolf algorithm to

properties. The only difference is that the graph is nowcalculate the greatest Lyapunov exponent from time series
shifted along the abscissae. Consequently, MCF is also ngy9].

able to filter noise, but is robust against noise and reduces the (3) |f |)\ma>ﬁ|<1, thenx; is a possible new fixed point.
chaotic fluctuations. Thus, from Eq.(3.7) and Eq.(3.4) the constant feedback

Finally, we turn to accessing periodic orbits by applying t be determined bk=x. —f(x: here f(x.
MCF. Therefore, the bifurcation diagram in Fig.(a0and \ie; olr ;?g it %llo\?vsrtrr:l;e b=x~1(x), where f(x)
T A+ LD

the Lyapunov spectrum in Fig. {) are computed for the

. ||Xj+1_xi+1H
lim WN)\ma&. (48)

w—0

controlled Hmon map. The feedback paramekéd) is var- K=X — X1 1. (4.9
ied to produce different system dynamics. The map is un- b
stable for k(1)<—1.1021 and has fixed points for This algorithm is obviously vague for a great radwisor

—1.1023<k(1)<—0.69375. We can find a period doubling 5 the presence of noise. In this case a g} of several
bifurcation atk(1)=—0.69375, where\,=0. Thus, peri- pearby points can be used to estimate the eigenvalue by least
returns to a chaotic phase kf1)~0.115, which is inter- 5 estimate the real SUCCESSQY, ;.

rupted by some stable higher periodic orbits. The map be- Note that we do not use a time series reconstructed from a
comes unstable for parameter valk¢$)>0.187. Aswe can gne-dimensional time series by a time-delay methd.

see, it is possible to steer trajectories to different periodica|though first numerical results show that the maximal ei-

orbits by simply varying the feedback parameter. Note thagenyalue can be approximated well, it is not yet possible to
the identical Lyapunov spectrum is obtained as in the case Qiz|culatek from this kind of data.

CF. Only one difference arises, since applying MCF yields a
system breakdown fork(1)>0.1622 instead ofk(1)
>0.187 for CF. Furthermore, the bifurcation diagram in Fig.
10(a) is only shifted in the phase space by the amount of with CF and MCF, simple methods for controlling chaos
k(1) if it is compared with the bifurcation diagram for CF. in higher-dimensional discrete maps have been introduced. It
was shown analytically that chaotic attractors can be con-
verted to fixed point attractors if a constant feedback vector
is added to the system functi@¢@F) or if the input vector is

In the preceding section the calculation of the constansuperimposed by a constant feedback veCF). The ba-
feedback vectok is based on the priori knowledge of the sic idea in both methods is to shift the graph of the function
map, which in most practical cases is unrealistic. There argector of a map. A method to choose an appropriate constant

V. CONCLUSION

C. Determining the constant feedback vector from time series
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feedback vector for controlling chaotic systems is achieveao latency due to measuring and computing control signals is
from Theorems 111.2 or lll.4. It is obvious, because of the wasted and thus chaos control in the GHz range is imagin-
weak requirements referring to the function vecfoof a  able. Furthermore, by applying CF or MCF, the dimension-
map, that CF and MCF guarantee chaos control for almostlity of a system does not increase, unlike with the DFC
every map, e.g., high-dimensional coupled map lattices. Unmethod, becausk is a constant. Due to robustness against
fortunately, this good news makes it difficult to find a basinnoise, CF and MCF are superior to OGY since the use of
of attraction for initial conditions such that a map is attractedinear approximation in small vicinities of certain points is
to the fixed point. Therefore, rigorous conditions for systemrenounced. These methods do not change system parameters,
function vectors have to be set up, as Gueron illustrated fowhich may be fixed by the properties of the investigated
the one-dimensional ca$g]. However, as it is known tha  map. Additionally, note that CF and MCF can be applied to
in Theorem 1.2 andz—k in Theorem 1ll.4 represent nonchaotic maps, e.g., maps converging to a stable fixed
asymptotic stable fixed points, it is guaranteed that there expoint can be steered to other fixed points or chaotic regions if
ist at least small neighborhoods of initial conditions converg-desired. As for OGY, targeting and DFC, the application of
ing to zandz—k, respectively. An extension of this idea was CF and MCF does not implg priori knowledge of the sys-
formalized in Propositions 111.3 and 11I.5. Numerical ex- tem equations, since control can be achieved by successively
amples were given as CF and MCF were applied to thescending or descending the constant feedback parameter. In
Henon map; it was also shown that periodic states are accegddition, it has been shown for the first time of CF and MCF
sible. that possible new fixed points as well as the constant feed-

Besides their simple implementation, since we do notback vector can be determined from time series information.
have to collect data for the computation of parameter perturFinally, the application of CF and MCF is not limited by
bations or feedbacks, both CF and MCF methods possesertain characteristics of a map, like finite torsion in the case
further advantages with regard to the other methods. Sincef DFC, or relatively small Lyapunov exponents compared to
no updated information on the state of the system is requiredhe discrete time steps, as in the case of OGY.
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